Dr. Nares Trakooljul

Institut für Genombiologie

+49 38208 68-702
Leibniz-Institut für Nutztierbiologie (FBN)
Institut für Genombiologie
Abteilung Genomik
Wilhelm-Stahl-Allee 2
18196 Dummerstorf

Forschungsinteressen

  • Epigenetische Einflüsse auf maternale Ernährung während der Trächtigkeit  auf das Methylom, Transkriptom und die Phänotypen der Nachkommen
  • Funktionelle Rolle der microRNAs in Nutztieren
  • Anwendung von Next Generation Sequencing (NGS) Technologien in der Nutztiergenomik

Lebenslauf

  • seit 2012: Wissenschaftler am Leibniz Institut für Nutztierbiologie (FBN), Dummerstorf
  • 2008–2012: Wissenschaftlicher Mitarbeiter an der North Carolina State University, USA
  • 2005–2008: Postdoc an der University of Delaware, USA
  • 1999–2005: Promotion an der Universität Bonn

Publikationen

Cogburn, L. A.; Smarsh, D. N.; Wang, X.; Trakooljul, N.; Carré, W.; White, H. B. (2018):
Transcriptional profiling of liver in riboflavin-deficient chicken embryos explains impaired lipid utilization, energy depletion, massive hemorrhaging, and delayed feathering. BMC Genomics 19: 177, 1-30
Hicks, J. A.; Trakooljul, N.; Liu, H. (2018):
Alterations in cellular and viral microRNA and cellular gene expression in Marek's disease virus-transformed T-cell lines treated with sodium butyrate. Poultry Sci (https://dx.doi.org/10.3382/ps/pey412)
Cogburn, L. A.; Trakooljul, N.; Chen, C.; Huang, H.; Wu, C. H.; Carré, W.; Wang, X.; White, H. B. (2018):
Transcriptional profiling of liver during the critical embryo-to-hatchling transition period in the chicken (Gallus gallus). BMC Genomics 19: 695, 1-37
Horodyska, J.; Reyer, H.; Wimmers, K.; Trakooljul, N.; Lawlor, P.; Hamill, R. (2018):
Transcriptome analysis of adipose tissue from pigs divergent in feed efficiency reveals alteration in gene networks related to adipose growth, lipid metabolism, extracellular matrix and immune response. Mol Genet genomics
Horodyska, J.; Wimmers, K.; Reyer, H.; Trakooljul, N.; Mullen, A.; Lawlor, P.; Hamill, R. (2018):
RNA-seq of muscle from pigs divergent in feed efficiency and product quality identifies differences in immune response, growth, and macronutrient and connective tissue metabolism. BMC Genomics 19: 791, 1-18
Reyer, H.; Metzler-Zebeli, B.U.; Trakooljul, N.; Oster, M.; Muráni, E.; Ponsuksili, S.; Hadlich, F.; Wimmers, K. (2018):
Transcriptional shifts account for divergent resource allocation in feed efficient broiler chickens. Sci Rep-UK 8: 12903, 1--9
Naraballobh, W; Trakooljul, N.; Muráni, E.; Krischek, C.; Janisch, S.; Wicke, M.; Ponsuksili, S.; Wimmers, K. (2018):
miRNAs regulate acute transcriptional changes in broiler embryos in response to modification of incubation temperature. Sci Rep-UK 8: 11371, 1-12
Oster, M.; Trakooljul, N.; Reyer, H.; Zeyner, A.; Muràni, E.; Ponsuksili, S.; Wimmers, K. (2017):
Sex-specific muscular maturation responses following prenatal exposure to methylation-related micronutrients in pigs. Nutrients 9 (1): 74-86
Liu, X; Trakooljul, N.; Hadlich, F.; Muràni, E.; Wimmers, K.; Ponsuksili, S. (2017):
Mitochondrial-nuclear crosstalk, haplotype and copy number variation distinct in muscle fiber type, mitochondrial respiratory and metabolic enzyme activities. Sci Rep-UK 7: 14024, 1-12
Ponsuksili, S.; Trakooljul, N.; Hadlich, F.; Haack, F.; Muràni, E.; Wimmers, K. (2017):
Genetic architecture and regulatory impact on hepatic microRNA expression linked to immune and metabolic traits. Open Biol 7 (11): 170101, 1-11
Oster, M.; Nuchchanart, W.; Trakooljul, N.; Muràni, E.; Zeyner, A.; Wirthgen, E.; Hoeflich, A.; Ponsuksili, S.; Wimmers, K. (2016):
Methylating micronutrient supplementation during pregnancy influences foetal hepatic gene expression and IGF signalling and increases foetal weight. Eur J Nutr 55 (4): 1717-1727
Naraballobh, W; Trakooljul, N.; Muràni, E.; Brunner, R. M.; Krischek, C.; Janisch, S.; Wicke, M.; Ponsuksili, S.; Wimmers, K. (2016):
Transient shifts of incubation temperature reveal immediate and long-term transcriptional response in chicken breast muscle underpinning resilience and phenotypic plasticity. Plos One 11 (9): e0162485, 1-17
Liu, X.; Trakooljul, N.; Hadlich, F.; Muràni, E.; Wimmers, K.; Ponsuksili, S. (2016):
MicroRNA-mRNA regulatory networking fine-tunes the porcine muscle fiber type, muscular mitochondrial respiratory and metabolic enzyme activities. BMC Genomics 17: 531, 1-14
Ponsuksili, S.; Reyer, H.; Trakooljul, N.; Muràni, E.; Wimmers, K. (2016):
Single- and Bayesian multi-marker genome-wide association for haematological parameters in pigs. Plos One 11 (7): e0159212, 1-14
Naraballobh, W; Trakooljul, N.; Muràni, E.; Brunner, R. M.; Krischek, C.; Janisch, S.; Wicke, M.; Ponsuksili, S.; Wimmers, K. (2016):
Immediate and long-term transcriptional response of hind muscle tissue to transient variation of incubation temperature in broilers. BMC Genomics 17: 323, 1-13
Liu, X.; Trakooljul, N.; Muràni, E.; Krischek, C.; Schellander, K.; Wicke, M.; Wimmers, K.; Ponsuksili, S. (2016):
Molecular changes in mitochondrial respiratory activity and metabolic enzyme activity in muscle of four pig breeds with distinct metabolic types. J Bioenerg Biomembr 48 (1): 55-65
Ponsuksili, S.; Trakooljul, N.; Hadlich, F.; Haack, F.; Muràni, E.; Wimmers, K. (2016):
Genetically regulated hepatic transcripts and pathways orchestrate haematological, biochemical and body composition traits. Sci Rep-UK 6: 39614, 1-13
Ponsuksili, S.; Zebunke, M.; Muràni, E.; Trakooljul, N.; Krieter, J.; Puppe, B.; Schwerin, M.; Wimmers, K. (2015):
Integrated Genome-wide association and hypothalamus eQTL studies indicate a link between the circadian rhythm-related gene PER1 and coping behavior. Sci Rep-UK 5: 16264, 1-14
Liu, X; Du, Y.; Trakooljul, N.; Brand, B.; Muràni, E.; Krischek, C.; Wicke, M.; Schwerin, M.; Wimmers, K.; Ponsuksili, S. (2015):
Muscle transcriptional profile based on muscle fiber, mitochondrial respiratory activity, and metabolic enzymes. Int J Biol Sci 11 (12): 1348-1362
Siengdee, P.; Trakooljul, N.; Muràni, E.; Schwerin, M.; Wimmers, K.; Ponsuksili, S. (2015):
MicroRNAs regulate cellular ATP levels by targeting mitochondrial energy metabolism genes during C2C12 myoblast differentiation. Plos One 10 (5): e0127850, 1-20