Dr. rer. nat. Christina Galuska

+49 38208 68-852
Forschungsinstitut für Nutztierbiologie (FBN)
Metabolomics Plattform
Wilhelm-Stahl-Allee 2
18196 Dummerstorf

Publikationen

Schilf, P.; Künstner, A.; Olbrich, M.; Waschina, S.; Fuchs, B.; Galuska, C.E.; Braun, A.; Neuschütz, K.; Seutter, M.; Bieber, K.; Hellberg, L.; Sina, C.; Laskay, T.; Rupp, J.; Ludwig, R.; Zillikens, D.; Busch, H.; Sadik, C. D.; Misa, H.; Ibrahim, S. M. (2022):
A Mitochondrial Polymorphism Alters Immune Cell Metabolism and Protects Mice from Skin Inflammation. Int J Mol Sci 22 (3): 1006, 1-22
Hachem, N. E.; Humpfle, L.; Simon, P.; Kaese, M.; Weinhold, B.; Günther, J.; Galuska, S. P.; Middendorff, R. (2021):
The Loss of Polysialic Acid Impairs the Contractile Phenotype of Peritubular Smooth Muscle Cells in the Postnatal Testis. Cells-Basel
Zlatina, K.; Galuska, S. P. (2021):
Immunoglobulin Glycosylation – An Unexploited Potential for Immunomodulatory Strategies in Farm Animals. Front Immunol
Gille, B.; Galuska, C. E.; Fuchs, B.; Peleg, S. (2021):
Recent advances in studying age-associated lipids alterations and dietary interventions in mammals. Front Aging 2: 773795, 1-7
Magray, A. R.; Martorell Ribera, J.; Isernhagen, L.; Galuska, S. P.; Günther, J.; Verleih, M.; Viergutz, T.; Brunner, R. M.; Ganai, B.; Ahmad, F.; Zlatina, K.; Rebl, A. (2021):
Evaluation of blood cell viability rate, gene expression, and O-GlcNAcylation profiles as indicative signatures for fungal stimulation of salmonid cell models. MOL IMMUNOL
Wołczańska, A.; Christie, W. W.; Fuchs, B.; Galuska, C.E.; Kowalczyk, B.; Palusińska-Szysz, M. (2021):
Fatty acid composition and lipid profiles as chemotaxonomic markers of phytopathogenic fungi Puccinia malvacearum and P. glechomatis. FUNGAL BIOL-UK 125 (11): 869-878
Beckmann, L.; Künstner, A.; Freschi, M. L.; Huber, K.; Stölting, I.; Ibrahim, S. M.; Misa, H.; Freitag, J.; Langan, E. A.; Matschl, U.; Galuska, C.E.; Fuchs, B.; Knobloch, J. K.; Busch, H.; Raasch, M.-L. (2021):
Telmisartan induces a specific gut microbiota signature which may mediate its antiobesity effect. PHARMACOL RES 170: 105724, 1-14
Kühnle, A.; Galuska, C.E.; Zlatina, K.; Galuska, S. P. (2020):
The bovine antimicrobial peptide lactoferricin interacts with polysialic acid without loss of its antimicrobial activity against Escherichia coli. Animals-Basel 10 (1): 1, 1--12
Galuska, C.E.; Rudloff, S.; Kunz, S.; Borsch, C; Reutzel, M.; Eckert, G; Galuska, S. P.; Kunz, C. (2020):
Metabolic fate and organ distribution of 13C-3′-sialyllactose and 13C-N-acetylneuraminic acid in wild-type mice – No evidence for direct incorporation into the brain. J Funct Foods 75: 104268, 1-10
Kühnle, A.; Veelken, R.; Galuska, C.E.; Saftenberger, M.; Verleih, M.; Schuppe, H.C.; Rudloff, S.; Kunz, C.; Galuska, S. P. (2019):
Polysialic acid interacts with lactoferrin and supports its activity to inhibit the release of neutrophil extracellular traps. Carbohyd Polym 208: 32-41
Zlatina, K.; Saftenberger, M.; Kühnle, A.; Galuska, C.E.; Gärtner, U.; Rebl, A.; Oster, M.; Vernunft, A.; Galuska, S. P. (2018):
Polysialic acid in human plasma can compensate the cytotoxicity of histones. Int J Mol Sci 19 (6): 1679, 1-10
Galuska, C.E.; Lütteke, T.; Galuska, S. P. (2017):
Is polysialylated NCAM not only a regulator during brain development but also during the formation of other organs?. BIOLOGY-BASEL 6 (2): 27,1-15
Galuska, S. P.; Galuska, C.E.; Tharmalingam, T; Zlatina, K.; Prem, G.; Husejnov, F.C.O.; Rudd, P.M.; Vann, W.F.; Reid, C.; Vionnet, J.; Gallagher, M.E.; Carrington, F.A.; Hassett, S.L.; Carrington, S.D. (2017):
In vitro generation of polysialylated cervical mucins by bacterial polysialyltransferases to counteract cytotoxicity of extracellular histones. FEBS J 284 (11): 1688-1699
Galuska, C.E.; Dambon, J.; Kühnle, A.; Bornhöfft, K.; Prem, G.; Zlatina, K.; Lütteke, T.; Galuska, S. P. (2017):
Artificial polysialic acid chains as sialidase-resistant molecular-anchors to accumulate particles on neutrophil extracellular traps. Front Immunol 8: 1229, 1-10