PD Dr. rer. nat. habil. Dörte Wittenburg
Research interests
- Statistical methods for the estimation of genetic effects on quantitative traits
- Inclusion of dependencies between genomic sites in penalised regression approaches
- Estimation of population-genetic parameters (linkage disequilibrium and recombination rate)
Curriculum Vitae
- 2021: Habilitation and Venia Legendi in animal breeding and genetics
Thesis: Statistical perspectives on dependencies between genomic markers - Since 2019: Head of Research Group “Statistics in Genomics”, FBN Dummerstorf
- 2013-2018: Head of Junior Scientist Group “Improving the genome-based phenotype prediction”, FBN Dummerstorf
- 2008-2012: Postdoc in Junior Scientist Group “BovIBI Bovine Integrative Bioinformatics for Genomic Selection”, FBN Dummerstorf
- 2005-2008: Doctoral studies in statistical genetics (Dr. rer. nat. in Biomathematics), FBN Dummerstorf and University Greifswald
PhD thesis: Statistical modelling of birth weight variability within litter in pigs - 2000-2005: Studies of Business Mathematics (Dipl.-Math. oec.), University Rostock
Diploma thesis: Linear and generalised linear models for the detection of QTL effects on the variability of repeated measurements
Teaching
Contribution to lectures in the module “Statistical modelling and experimental design” which is part of the master programme Sustainable Agricultural Systems at the University Rostock, AUF
Master theses offered in the field of animal breeding at https://www.auf.uni-rostock.de/studium/studienorganisation/angebot-abschlussarbeiten/
Publications
Melzer, N.; Qanbari, S.; Ding, X.; Wittenburg, D. (2023):
CLARITY: a Shiny app for interactive visualisation of the bovine physical-genetic map. Front Genet 14: 1082782, 1-10
https://doi.org/10.3389/fgene.2023.1082782
Jahnel, R. E.; Blunk, I.; Wittenburg, D.; Reinsch, N. (2023):
Relationship between milk urea content and important milk traits in Holstein cattle. Animal 17 (5): 100767, 1-10
Piepho, H.P.; Gabriel, D.; Hartung, J.; Büchse, A.; Grosse, M.; Kurz, S.; Laidig, F.; Michel, V.; Proctor, I.; Sedlmeier, J.E.; Toppel, K.; Wittenburg, D. (2022):
One, two, three: portable sample size in agricultural research. J AGR SCI-CAMBRIDGE 160 (6): 459-482
Qanbari, S.; Schnabel, R. D.; Wittenburg, D. (2022):
Evidence of Rare Misassemblies in the Bovine Reference Genome Revealed by Population Genetic Metrics. Anim Genet 53 (4): 498-505
de los Rios Pérez, L.; Druet, T.; Goldammer, T.; Wittenburg, D. (2022):
Analysis of autozygosity using whole-genome sequence data of full-sib families in pikeperch (Sander lucioperca). Front Genet 12: 786934, 1-9
https://doi.org/10.3389/fgene.2021.786934
Wittenburg, D. (2021):
Statistical perspectives on dependencies between genomic markers Rostock: 1-161
Goldammer, T.; Verleih, M.; Brunner, R. M.; Rebl, A.; Nguinkal, J. A.; de los Rios Pérez, L.; Schäfer, N.; Stüecken, M.; Swirplies, F.; Wittenburg, D. (2021):
Pikeperch genome data – basis for the smart farming in aquaculture. Mitteilungen der Landesforschungsanstalt für Landw (63): 125-133
https://www.landwirtschaft-mv.de/static/LFA/Dateien/Hefte/MdLFA_Heft63.pdf
de los Rios Pérez, L.; Nguinkal, J. A.; Verleih, M.; Rebl, A.; Brunner, R. M.; Klosa, J.; Schäfer, N.; Stüeken, M.; Goldammer, T.; Wittenburg, D. (2020):
An ultra-high density SNP-based linkage map for enhancing the pikeperch (Sander lucioperca) genome assembly to chromosome-scale. Sci Rep-UK 10 (22335): 1-13
https://doi.org/10.1038/s41598-020-79358-z
Klosa, J.; Simon, N.; Westermark, P. O.; Liebscher, V.; Wittenburg, D. (2020):
Seagull: lasso, group lasso and sparse-group lasso regularisation for linear regression models via proximal gradient descent. BMC Bioinformatics 21: 407, 1-8
https://doi.org/10.1186/s12859-020-03725-w
de los Rios Pérez, L.; Brunner, R. M.; Hadlich, F.; Rebl, A.; Kühn, C.; Wittenburg, D.; Goldammer, T.; Verleih, M. (2020):
Comparative analysis of the transcriptome and distribution of putative SNPs in two rainbow trout (Oncorhynchus mykiss) breeding strains by using next-generation sequencing. Genes-Basel 11: 841, 1-16
https://doi.org/10.3390/genes11080841
Wittenburg, D.; Bonk, S. M.; Doschoris, M.; Reyer, H. (2020):
Design of experiments for fine-mapping quantitative trait loci in livestock populations . BMC Genet 21: 66,1-14
https://doi.org/10.1186/s12863-020-00871-1
Nguinkal, J. A.; Brunner, R. M.; Verleih, M.; Rebl, A.; de los Rios Pérez, L.; Schäfer, N.; Hadlich, F.; Stüeken, M.; Wittenburg, D.; Goldammer, T. (2019):
The first highly contiguous genome assembly of pikeperch (Sander lucioperca), an emerging aquaculture species in Europe. Genes-Basel 10: 708, 1-14
https://doi.org/10.3390/genes10090708
Reyer, H.; Oster, M.; Wittenburg, D.; Murani, E.; Ponsuksili, S.; Wimmers, K. (2019):
Genetic contribution to variation in blood calcium, phosphorus, and alkaline phosphatase activity in pigs. Front Genet 10: 590, 1-12
https://doi.org/10.3389/fgene.2019.00590
Boerner, V.; Wittenburg, D. (2018):
On estimation of genome composition in genetically admixed individuals using constrained genomic regression. Front Genet 9: 185, 1-14
https:/doi.org/10.3389/fgene.2018.00185
Hampel, A.; Teuscher, F.; Gomez-Raya, L.; Doschoris, M.; Wittenburg, D. (2018):
Estimation of recombination rate and maternal linkage disequilibrium in half-sibs. Front Genet 9: 186, 1-13
https://dx.doi.org/10.3389/fgene.2018.00186