Dr. rer. nat. Christina Galuska
Publications
Isernhagen, L.; Galuska, C. E.; Vernunft, A.; Galuska, S. P. (2024):
Structural Characterization and Abundance of Sialylated Milk Oligosaccharides in Holstein Cows during Early Lactation
Foods 13: 2484, 1-18
https://doi.org/10.3390/foods13162484
Zlatina, K.; Isernhagen, L.; Galuska, C. E.; Muráni, E.; Galuska, S. P. (2024):
Changes in the N-glycosylation of porcine immune globulin G during postnatal development
Frontiers in Immunology 15: 1361240, 1-12
https://doi.org/10.3389/fimmu.2024.1361240
Hinterseher, J.; Günther, J.; Zlatina, K.; Isernhagen, L.; Viergutz, T.; Wirthgen, E.; Höflich, A.; Vernunft, A.; Galuska, S. P. (2023):
Milk Polysialic Acid Levels Rapidly Decrease in Line with the N-Acetylneuraminic Acid Concentrations during Early Lactation in Dairy Cows. BIOLOGY-BASEL 12 (1): 5, 1-12
Brenmoehl, J.; Brosig, E.; Trakooljul, N.; Walz, C.; Ohde, D.; Noce, A.; Walz, M.; Langhammer, M.; Petkov, S.; Röntgen, M.; Maak, S.; Galuska, C. E.; Fuchs, B.; Kuhla, B.; Ponsuksili, S.; Wimmers, K.; Hoeflich, A. (2023):
Metabolic Pathway Modeling in Muscle of Male Marathon Mice (DUhTP) and Controls (DUC) - a Possible Role of Lactate Dehydrogenase in Metabolic Flexibility. Cells-Basel 12 (15): 1925, 1-21
Humpfle, L.; Hachem, N. E.; Simon, P.; Weinhold, B.; Galuska, S. P.; Middendorff, R. (2023):
Knockout of the polysialyltransferases ST8SiaII and ST8SiaIV leads to a dilatation of rete testis during postnatal development. Front Physiol 14: 1240296, 1-8
Kronimus, Y.; Albus, A.; Hasenberg, M.; Walkenfort, B.; Seifert, M.; Budeus, B.; Gronewold, J.; Hermann, D. M.; Ross, J. A.; Lochnit, G.; Galuska, S. P.; Marcus, K.; Sitek, B.; Klotsche, J.; Mengel, D.; Neumann, S.; Dodel, R. (2023):
Fc N-glycosylation of autoreactive Aβ antibodies as a blood-based biomarker for Alzheimer's disease [epublished ahead of print]. ALZHEIMERS DEMENT
Ponsuksili, S.; Murani, E.; Hadlich, F.; Iqbal, M. A.; Fuchs, B.; Galuska, C. E.; Perdomo-Sabogal, A.; Sarais, F.; Trakooljul, N.; Reyer, H.; Oster, M.; Wimmers, K. (2022):
Prenatal transcript levels and metabolomics analyses reveal metabolic changes associated with intrauterine growth restriction and sex. Open Biol 12 (9): 220151, 1-13
Magray, A. R.; Martorell Ribera, J.; Isernhagen, L.; Galuska, S. P.; Günther, J.; Verleih, M.; Viergutz, T.; Brunner, R. M.; Ganai, B.; Ahmad, F.; Zlatina, K.; Rebl, A. (2022):
Evaluation of blood cell viability rate, gene expression, and O-GlcNAcylation profiles as indicative signatures for fungal stimulation of salmonid cell models. MOL IMMUNOL 142: 120-129
https://doi.org/10.1016/j.molimm.2021.12.019
Chmiel, E.; Galuska, C. E.; Koper, P.; Kowalczyk, B.; Urbanik-Sypniewska, T.; Palusínska-Szysz, M.; Fuchs, B. (2022):
Unusual Lipid Components of Legionella gormanii Membranes. METABOLITES 12 (5): 418, 1-20
Beckmann, L.; Künstner, A.; Freschi, M. L.; Huber, K.; Stölting, I.; Ibrahim, S. M.; Misa, H.; Freitag, J.; Langan, E. A.; Matschl, U.; Galuska, C. E.; Fuchs, B.; Knobloch, J. K.; Busch, H.; Raasch, M.-L. (2021):
Telmisartan induces a specific gut microbiota signature which may mediate its antiobesity effect. PHARMACOL RES 170: 105724, 1-14
https://doi.org/10.1016/j.phrs.2021.105724
Schilf, P.; Künstner, A.; Olbrich, M.; Waschina, S.; Fuchs, B.; Galuska, C. E.; Braun, A.; Neuschütz, K.; Seutter, M.; Bieber, K.; Hellberg, L.; Sina, C.; Laskay, T.; Rupp, J.; Ludwig, R.; Zillikens, D.; Busch, H.; Sadik, C. D.; Misa, H.; Ibrahim, S. M. (2021):
A Mitochondrial Polymorphism Alters Immune Cell Metabolism and Protects Mice from Skin Inflammation. Int J Mol Sci 22 (3): 1006, 1-22
https://doi.org/10.3390/ijms22031006
Wołczańska, A.; Christie, W. W.; Fuchs, B.; Galuska, C. E.; Kowalczyk, B.; Palusińska-Szysz, M. (2021):
Fatty acid composition and lipid profiles as chemotaxonomic markers of phytopathogenic fungi Puccinia malvacearum and P. glechomatis. FUNGAL BIOL-UK 125 (11): 869-878
https://doi.org/10.1016/j.funbio.2021.05.008
Gille, B.; Galuska, C. E.; Fuchs, B.; Peleg, S. (2021):
Recent advances in studying age-associated lipids alterations and dietary interventions in mammals. Front Aging 2: 773795, 1-7
https://doi.org/10.3389/fragi.2021.773795
Zlatina, K.; Galuska, S. P. (2021):
Immunoglobulin Glycosylation – An Unexploited Potential for Immunomodulatory Strategies in Farm Animals. Front Immunol 12: 753294, 1-13
https://doi.org/10.3389/fimmu.2021.753294
Hachem, N. E.; Humpfle, L.; Simon, P.; Kaese, M.; Weinhold, B.; Günther, J.; Galuska, S. P.; Middendorff, R. (2021):
The Loss of Polysialic Acid Impairs the Contractile Phenotype of Peritubular Smooth Muscle Cells in the Postnatal Testis. Cells-Basel 10 (6): 1347, 1-12
https://doi.org/10.3390/cells10061347
Galuska, C.E.; Rudloff, S.; Kunz, S.; Borsch, C; Reutzel, M.; Eckert, G; Galuska, S. P.; Kunz, C. (2020):
Metabolic fate and organ distribution of 13C-3′-sialyllactose and 13C-N-acetylneuraminic acid in wild-type mice – No evidence for direct incorporation into the brain. J Funct Foods 75: 104268, 1-10
https://doi.org/10.1016/j.jff.2020.104268
Kühnle, A.; Galuska, C.E.; Zlatina, K.; Galuska, S. P. (2020):
The bovine antimicrobial peptide lactoferricin interacts with polysialic acid without loss of its antimicrobial activity against Escherichia coli. Animals-Basel 10 (1): 1, 1--12
https://doi.org/10.3390/ani10010001
Kühnle, A.; Veelken, R.; Galuska, C.E.; Saftenberger, M.; Verleih, M.; Schuppe, H.C.; Rudloff, S.; Kunz, C.; Galuska, S. P. (2019):
Polysialic acid interacts with lactoferrin and supports its activity to inhibit the release of neutrophil extracellular traps. Carbohyd Polym 208: 32-41
https://doi.org/10.1016/j.carbpol.2018.12.033
Zlatina, K.; Saftenberger, M.; Kühnle, A.; Galuska, C.E.; Gärtner, U.; Rebl, A.; Oster, M.; Vernunft, A.; Galuska, S. P. (2018):
Polysialic acid in human plasma can compensate the cytotoxicity of histones. Int J Mol Sci 19 (6): 1679, 1-10
https://doi.org/10.3390/ijms18061679
Galuska, C.E.; Dambon, J.; Kühnle, A.; Bornhöfft, K.; Prem, G.; Zlatina, K.; Lütteke, T.; Galuska, S. P. (2017):
Artificial polysialic acid chains as sialidase-resistant molecular-anchors to accumulate particles on neutrophil extracellular traps. Front Immunol 8: 1229, 1-10
https://dx.doi.org/10.3389/fimmu.2017.01229